Thermal Properties of Hydrogen – H

Periodic Table of Elements
1
H

Hydrogen

Nonmetals

2
He

Helium

Noble gas

3
Li

Lithium

Alkali metal

4
Be

Beryllium

Alkaline earth metal

5
B

Boron

Metalloids

6
C

Carbon

Nonmetals

7
N

Nitrogen

Nonmetals

8
O

Oxygen

Nonmetals

9
F

Fluorine

Nonmetals

10
Ne

Neon

Noble gas

11
Na

Sodium

Alkali metal

12
Mg

Magnesium

Alkaline earth metal

13
Al

Aluminium

Post-transition metals

14
Si

Silicon

Metalloids

15
P

Phosphorus

Nonmetal

16
S

Sulfur

Nonmetal

17
Cl

Chlorine

Nonmetal

18
Ar

Argon

Noble gas

19
K

Potassium

Alkali metal

20
Ca

Calcium

Alkaline earth metal

21
Sc

Scandium

Transition metals

22
Ti

Titanium

Transition metals

23
V

Vanadium

Transition metals

24
Cr

Chromium

Transition metals

25
Mn

Manganese

Transition metals

26
Fe

Iron

Transition metals

27
Co

Cobalt

Transition metals

28
Ni

Nickel

Transition metals

29
Cu

Copper

Transition metals

30
Zn

Zinc

Transition metals

31
Ga

Gallium

Post-transition metals

32
Ge

Germanium

Metalloids

33
As

Arsenic

Metalloids

34
Se

Selenium

Nonmetal

35
Br

Bromine

Nonmetal

36
Kr

Krypton

Noble gas

37
Rb

Rubidium

Alkali metals

38
Sr

Strontium

Alkaline earth metals

39
Y

Yttrium

Transition metals

40
Zr

Zirconium

Transition metals

41
Nb

Niobium

Transition metals

42
Mo

Molybdenum

Transition metals

43
Tc

Technetium

Transition metals

44
Ru

Ruthenium

Transition metals

45
Rh

Rhodium

Transition metals

46
Pd

Palladium

Transition metals

47
Ag

Silver

Transition metals

48
Cd

Cadmium

Transition metals

49
In

Indium

Post-transition metals

50
Sn

Tin

Post-transition metals

51
Sb

Antimony

Metalloids

52
Te

Tellurium

Metalloids

53
I

Iodine

Nonmetal

54
Xe

Xenon

Noble gas

55
Cs

Caesium

Alkali metals

56
Ba

Barium

Alkaline earth metals

57-71

 

Lanthanoids

 

72
Hf

Hafnium

Transition metals

73
Ta

Tantalum

Transition metals

74
W

Tungsten

Transition metals

75
Re

Rhenium

Transition metals

76
Os

Osmium

Transition metals

77
Ir

Iridium

Transition metals

78
Pt

Platinum

Transition metals

79
Au

Gold

Transition metals

80
Hg

Mercury

Transition metals

81
Tl

Thallium

Post-transition metals

82
Pb

Lead

Post-transition metals

83
Bi

Bismuth

Post-transition metals

84
Po

Polonium

Post-transition metals

85
At

Astatine

Metalloids

86
Rn

Radon

Noble gas

87
Fr

Francium

Alkali metal

88
Ra

Radium

Alkaline earth metal

89-103

 

Actinoids

 

104
Rf

Rutherfordium

Transition metal

105
Db

Dubnium

Transition metal

106
Sg

Seaborgium

Transition metal

107
Bh

Bohrium

Transition metal

108
Hs

Hassium

Transition metal

109
Mt

Meitnerium

 

110
Ds

Darmstadtium

 

111
Rg

Roentgenium

 

112
Cn

Copernicium

 

113
Nh

Nihonium

 

114
Fl

Flerovium

 

115
Mc

Moscovium

 

116
Lv

Livermorium

 

117
Ts

Tennessine

 

118
Og

Oganesson

 

57
La

Lanthanum

Lanthanoids

58
Ce

Cerium

Lanthanoids

59
Pr

Praseodymium

Lanthanoids

60
Nd

Neodymium

Lanthanoids

61
Pm

Promethium

Lanthanoids

62
Sm

Samarium

Lanthanoids

63
Eu

Europium

Lanthanoids

64
Gd

Gadolinium

Lanthanoids

65
Tb

Terbium

Lanthanoids

66
Dy

Dysprosium

Lanthanoids

67
Ho

Holmium

Lanthanoids

68
Er

Erbium

Lanthanoids

69
Th

Thulium

Lanthanoids

70
Yb

Ytterbium

Lanthanoids

71
Lu

Lutetium

Lanthanoids

89
Ac

Actinium

Actinoids

90
Th

Thorium

Actinoids

91
Pa

Protactinium

Actinoids

92
U

Uranium

Actinoids

93
Np

Neptunium

Actinoids

94
Pu

Plutonium

Actinoids

95
Am

Americium

Actinoids

96
Cm

Curium

Actinoids

97
Bk

Berkelium

Actinoids

98
Cf

Californium

Actinoids

99
Es

Einsteinium

Actinoids

100
Fm

Fermium

Actinoids

101
Md

Mendelevium

Actinoids

102
No

Nobelium

Actinoids

103
Lr

Lawrencium

Actinoids

Thermal Properties of Hydrogen

Hydrogen – Melting Point and Boiling Point

Melting point of Hydrogen is -259.1°C.

Boiling point of Hydrogen is -252.9°C.

Note that, these points are associated with the standard atmospheric pressure.

Boiling Point

In general, boiling is a phase change of a substance from the liquid to the gas phase. The boiling point of a substance is the temperature at which this phase change (boiling or vaporization) occurs. The temperature at which vaporization (boiling) starts to occur for a given pressure is also known as the saturation temperature and at this conditions a mixture of vapor and liquid can exist together. The liquid can be said to be saturated with thermal energy. Any addition of thermal energy results in a phase transition. At the boiling point the two phases of a substance, liquid and vapor, have identical free energies and therefore are equally likely to exist. Below the boiling point, the liquid is the more stable state of the two, whereas above the gaseous form is preferred. The pressure at which vaporization (boiling) starts to occur for a given temperature is called the saturation pressure. When considered as the temperature of the reverse change from vapor to liquid, it is referred to as the condensation point.

As can be seen, the boiling point of a liquid varies depending upon the surrounding environmental pressure. A liquid in a partial vacuum has a lower boiling point than when that liquid is at atmospheric pressure. A liquid at high pressure has a higher boiling point than when that liquid is at atmospheric pressure. For example, water boils at 100°C (212°F) at sea level, but at 93.4°C (200.1°F) at 1900 metres (6,233 ft) altitude. On the other hand, water boils at 350°C (662°F) at 16.5 MPa (typical pressure of PWRs).

In the periodic table of elements, the element with the lowest boiling point is helium. Both the boiling points of rhenium and tungsten exceed 5000 K at standard pressure. Since it is difficult to measure extreme temperatures precisely without bias, both have been cited in the literature as having the higher boiling point.

Melting Point

In general, melting is a phase change of a substance from the solid to the liquid phase. The melting point of a substance is the temperature at which this phase change occurs. The melting point also defines a condition in which the solid and liquid can exist in equilibrium. Adding a heat will convert the solid into a liquid with no temperature change. At the melting point the two phases of a substance, liquid and vapor, have identical free energies and therefore are equally likely to exist. Below the melting point, the solid is the more stable state of the two, whereas above the liquid form is preferred. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is referred to as the freezing point or crystallization point.

See also: Melting Point Depression

The first theory explaining mechanism of melting in the bulk was proposed by Lindemann, who used vibration of atoms in the crystal to explain the melting transition. Solids are similar to liquids in that both are condensed states, with particles that are far closer together than those of a gas. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice (crystalline solids, which include metals and ordinary ice) or irregularly (an amorphous solid such as common window glass), and are typically low in energy. The motion of individual atoms, ions, or molecules in a solid is restricted to vibrational motion about a fixed point. As a solid is heated, its particles vibrate more rapidly as the solid absorbs kinetic energy. At some point the amplitude of vibration becomes so large that the atoms start to invade the space of their nearest neighbors and disturb them and the melting process initiates. The melting point is the temperature at which the disruptive vibrations of the particles of the solid overcome the attractive forces operating within the solid.

As with boiling points, the melting point of a solid is dependent on the strength of those attractive forces. For example, sodium chloride (NaCl) is an ionic compound that consists of a multitude of strong ionic bonds. Sodium chloride melts at 801°C. On the other hand, ice (solid H2O) is a molecular compound whose molecules are held together by hydrogen bonds, which is effectively a strong example of an interaction between two permanent dipoles. Though hydrogen bonds are the strongest of the intermolecular forces, the strength of hydrogen bonds is much less than that of ionic bonds. The melting point of ice is 0 °C.

Covalent bonds often result in the formation of small collections of better-connected atoms called molecules, which in solids and liquids are bound to other molecules by forces that are often much weaker than the covalent bonds that hold the molecules internally together. Such weak intermolecular bonds give organic molecular substances, such as waxes and oils, their soft bulk character, and their low melting points (in liquids, molecules must cease most structured or oriented contact with each other).

 

melting-and-boiling-point-chemical-elements-chart

Hydrogen – Thermal Conductivity

Thermal conductivity of Hydrogen is 0.1805 W/(m·K).

The heat transfer characteristics of a solid material are measured by a property called the thermal conductivity, k (or λ), measured in W/m.K. It is a measure of a substance’s ability to transfer heat through a material by conduction. Note that Fourier’s law applies for all matter, regardless of its state (solid, liquid, or gas), therefore, it is also defined for liquids and gases.

The thermal conductivity of most liquids and solids varies with temperature. For vapors, it also depends upon pressure. In general:

thermal conductivity - definition

Most materials are very nearly homogeneous, therefore we can usually write k = k (T). Similar definitions are associated with thermal conductivities in the y- and z-directions (ky, kz), but for an isotropic material the thermal conductivity is independent of the direction of transfer, kx = ky = kz = k.

 

Thermal Conductivity of Metals

Transport of thermal energy in solids may be generally due to two effects:
  • the migration of free electrons
  • lattice vibrational waves (phonons)

When electrons and phonons carry thermal energy leading to conduction heat transfer in a solid, the thermal conductivity may be expressed as:

k = ke + kph

thermal conductivity - metalsMetals are solids and as such they possess crystalline structure where the ions (nuclei with their surrounding shells of core electrons) occupy translationally equivalent positions in the crystal lattice. Metals in general have high electrical conductivity, high thermal conductivity, and high density. Accordingly, transport of thermal energy may be due to two effects:

  • the migration of free electrons
  • lattice vibrational waves (phonons).

When electrons and phonons carry thermal energy leading to conduction heat transfer in a solid, the thermal conductivity may be expressed as:

k = ke + kph

The unique feature of metals as far as their structure is concerned is the presence of charge carriers, specifically electrons. The electrical and thermal conductivities of metals originate from the fact that their outer electrons are delocalized. Their contribution to the thermal conductivity is referred to as the electronic thermal conductivity, ke. In fact, in pure metals such as gold, silver, copper, and aluminum, the heat current associated with the flow of electrons by far exceeds a small contribution due to the flow of phonons. In contrast, for alloys, the contribution of kph to k is no longer negligible.

Thermal Conductivity of Nonmetals

thermal conductivity - building materialsFor nonmetallic solids, k is determined primarily by kph, which increases as the frequency of interactions between the atoms and the lattice decreases. In fact, lattice thermal conduction is the dominant thermal conduction mechanism in nonmetals, if not the only one. In solids, atoms vibrate about their equilibrium positions (crystal lattice). The vibrations of atoms are not independent of each other, but are rather strongly coupled with neighboring atoms. The regularity of the lattice arrangement has an important effect on kph, with crystalline (well-ordered) materials like quartz having a higher thermal conductivity than amorphous materials like glass. At sufficiently high temperatures kph ∝ 1/T.

The quanta of the crystal vibrational field are referred to as ‘‘phonons.’’ A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, like solids and some liquids. Phonons play a major role in many of the physical properties of condensed matter, like thermal conductivity and electrical conductivity. In fact, for crystalline, nonmetallic solids such as diamond, kph can be quite large, exceeding values of k associated with good conductors, such as aluminum. In particular, diamond has the highest hardness and thermal conductivity (k = 1000 W/m.K) of any bulk material.

 

Thermal Conductivity of Liquids and Gases

In physics, a fluid is a substance that continually deforms (flows) under an applied shear stress. Fluids are a subset of the phases of matter and include liquids, gases, plasmas and, to some extent, plastic solids. Because the intermolecular spacing is much larger and the motion of the molecules is more random for the fluid state than for the solid state, thermal energy transport is less effective. The thermal conductivity of gases and liquids is therefore generally smaller than that of solids. In liquids, the thermal conduction is caused by atomic or molecular diffusion. In gases, the thermal conduction is caused by diffusion of molecules from higher energy level to the lower level.

Thermal Conductivity of Gases

thermal conductivity - gasesThe effect of temperature, pressure, and chemical species on the thermal conductivity of a gas may be explained in terms of the kinetic theory of gases. Air and other gases are generally good insulators, in the absence of convection. Therefore, many insulating materials (e.g.polystyrene) function simply by having a large number of gas-filled pockets which prevent large-scale convection. Alternation of gas pocket and solid material causes that the heat must be transferred through many interfaces causing rapid decrease in heat transfer coefficient.

The thermal conductivity of gases is directly proportional to the density of the gas, the mean molecular speed, and especially to the mean free path of molecule. The mean free path also depends on the diameter of the molecule, with larger molecules more likely to experience collisions than small molecules, which is the average distance traveled by an energy carrier (a molecule) before experiencing a collision. Light gases, such as hydrogen and helium typically have high thermal conductivity. Dense gases such as xenon and dichlorodifluoromethane have low thermal conductivity.

In general, the thermal conductivity of gases increases with increasing temperature.

Thermal Conductivity of Liquids

As was written, in liquids, the thermal conduction is caused by atomic or molecular diffusion, but physical mechanisms for explaining the thermal conductivity of liquids are not well understood. Liquids tend to have better thermal conductivity than gases, and the ability to flow makes a liquid suitable for removing excess heat from mechanical components. The heat can be removed by channeling the liquid through a heat exchanger. The coolants used in nuclear reactors include water or liquid metals, such as sodium or lead.

The thermal conductivity of nonmetallic liquids generally decreases with increasing temperature.

Coefficient of Thermal Expansion of Hydrogen

Linear thermal expansion coefficient of Hydrogen is µm/(m·K)

Thermal expansion is generally the tendency of matter to change its dimensions in response to a change in temperature. It is usually expressed as a fractional change in length or volume per unit temperature change. Thermal expansion is common for solids, liquids and for gases. Unlike gases or liquids, solid materials tend to keep their shape when undergoing thermal expansion. A linear expansion coefficient is usually employed in describing the expansion of a solid, while a volume expansion coefficient is more useful for a liquid or a gas.

The linear thermal expansion coefficient is defined as:

linear thermal expansion coefficient

where L is a particular length measurement and dL/dT is the rate of change of that linear dimension per unit change in temperature.

The volumetric thermal expansion coefficient is the most basic thermal expansion coefficient, and the most relevant for fluids. In general, substances expand or contract when their temperature changes, with expansion or contraction occurring in all directions.

The volumetric thermal expansion coefficient is defined as:

volumetric thermal expansion coefficient

where L is the volume of the material and dV/dT is the rate of change of that volume per unit change in temperature.

In a solid or liquid, there is a dynamic balance between the cohesive forces holding the atoms or molecules together and the conditions created by temperature. Therefore higher temperatures imply greater distance between atoms. Different materials have different bonding forces and therefore different expansion coefficients. If a crystalline solid is isometric (has the same structural configuration throughout), the expansion will be uniform in all dimensions of the crystal. For these materials, the area and volumetric thermal expansion coefficient are, respectively, approximately twice and three times larger than the linear thermal expansion coefficient (αV = 3αL). If it is not isometric, there may be different expansion coefficients for different crystallographic directions, and the crystal will change shape as the temperature changes.

Hydrogen – Specific Heat, Latent Heat of Fusion, Latent Heat of Vaporization

Specific heat of Hydrogen is 14.304 J/g K.

Latent Heat of Fusion of Hydrogen is 0.05868 kJ/mol.

Latent Heat of Vaporization of Hydrogen is 0.44936 kJ/mol.

Specific Heat

Specific heat, or specific heat capacity, is a property related to internal energy that is very important in thermodynamics. The intensive properties cv and cp are defined for pure, simple compressible substances as partial derivatives of the internal energy u(T, v) and enthalpy h(T, p), respectively:

Table of specific heat capacitieswhere the subscripts v and p denote the variables held fixed during differentiation. The properties cv and cp are referred to as specific heats(or heat capacities) because under certain special conditions they relate the temperature change of a system to the amount of energy added by heat transfer. Their SI units are J/kg K or J/mol K.

Different substances are affected to different magnitudes by the addition of heat. When a given amount of heat is added to different substances, their temperatures increase by different amounts.

Heat capacity is an extensive property of matter, meaning it is proportional to the size of the system. Heat capacity C has the unit of energy per degree or energy per kelvin. When expressing the same phenomenon as an intensive property, the heat capacity is divided by the amount of substance, mass, or volume, thus the quantity is independent of the size or extent of the sample.

specific-heat-chemical-elements-chart

Latent Heat of Vaporization

Phase-Changes-Heat-of-VaporizationIn general, when a material changes phase from solid to liquid, or from liquid to gas a certain amount of energy is involved in this change of phase. In case of liquid to gas phase change, this amount of energy is known as the enthalpy of vaporization, (symbol ∆Hvap; unit: J) also known as the (latent) heat of vaporization or heat of evaporation. As an example, see the figure, which descibes phase transitions of water.

Latent heat is the amount of heat added to or removed from a substance to produce a change in phase. This energy breaks down the intermolecular attractive forces, and also must provide the energy necessary to expand the gas (the pΔV work). When latent heat is added, no temperature change occurs. The enthalpy of vaporization is a function of the pressure at which that transformation takes place.

The temperature at which vaporization (boiling) starts to occur for a given pressure is also known as the saturation temperature and at this conditions a mixture of vapor and liquid can exist together. The liquid can be said to be saturated with thermal energy. Any addition of thermal energy results in a phase transition. At the boiling point the two phases of a substance, liquid and vapor, have identical free energies and therefore are equally likely to exist. Below the boiling point, the liquid is the more stable state of the two, whereas above the gaseous form is preferred.

Latent Heat of Fusion

In case of solid to liquid phase change, the change in enthalpy required to change its state is known as the enthalpy of fusion, (symbol ∆Hfus; unit: J) also known as the (latent) heat of fusion. Latent heat is the amount of heat added to or removed from a substance to produce a change in phase. This energy breaks down the intermolecular attractive forces, and also must provide the energy necessary to expand the system (the pΔV work).

The liquid phase has a higher internal energy than the solid phase. This means energy must be supplied to a solid in order to melt it and energy is released from a liquid when it freezes, because the molecules in the liquid experience weaker intermolecular forces and so have a higher potential energy (a kind of bond-dissociation energy for intermolecular forces).

The temperature at which the phase transition occurs is the melting point. The melting point also defines a condition in which the solid and liquid can exist in equilibrium. Adding a heat will convert the solid into a liquid with no temperature change. At the melting point the two phases of a substance, liquid and vapor, have identical free energies and therefore are equally likely to exist. Below the melting point, the solid is the more stable state of the two, whereas above the liquid form is preferred. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is referred to as the freezing point or crystallization point.

heat-of-fusion-and-vaporization-chemical-elements