Nobelium – Latent Heat of Vaporization

Periodic Table of Elements - latent heat vaporization
1
H

Hydrogen

0.44936 kJ/mol

2
He

Helium

0.0845 kJ/mol

3
Li

Lithium

145.92 kJ/mol

4
Be

Beryllium

292.4 kJ/mol

5
B

Boron

508 kJ/mol

6
C

Carbon

355.8 kJ/mol

7
N

Nitrogen

(N2) 5.56 kJ/mol

8
O

Oxygen

(O2) 6.82 kJ/mol

9
F

Fluorine

3.2698 kJ/mol

10
Ne

Neon

1.7326 kJ/mol

11
Na

Sodium

96.96 kJ/mol

12
Mg

Magnesium

127.4 kJ/mol

13
Al

Aluminium

293.4 kJ/mol

14
Si

Silicon

384.22 kJ/mol

15
P

Phosphorus

51.9 kJ/mol

16
S

Sulfur

45 kJ/mol

17
Cl

Chlorine

10.2 kJ/mol

18
Ar

Argon

6.447 kJ/mol

19
K

Potassium

79.87 kJ/mol

20
Ca

Calcium

153.3 kJ/mol

21
Sc

Scandium

314.2 kJ/mol

22
Ti

Titanium

421 kJ/mol

23
V

Vanadium

0.452 kJ/mol

24
Cr

Chromium

344.3 kJ/mol

25
Mn

Manganese

266 kJ/mol

26
Fe

Iron

349.6 kJ/mol

27
Co

Cobalt

376.5 kJ/mol

28
Ni

Nickel

370.4 kJ/mol

29
Cu

Copper

300.3 kJ/mol

30
Zn

Zinc

155.3 kJ/mol

31
Ga

Gallium

258.7 kJ/mol

32
Ge

Germanium

330.9 kJ/mol

33
As

Arsenic

34.76 kJ/mol

34
Se

Selenium

37.7 kJ/mol

35
Br

Bromine

15.438 kJ/mol

36
Kr

Krypton

9.029 kJ/mol

37
Rb

Rubidium

72.216 kJ/mol

38
Sr

Strontium

144 kJ/mol

39
Y

Yttrium

363 kJ/mol

40
Zr

Zirconium

591 kJ/mol

41
Nb

Niobium

682 kJ/mol

42
Mo

Molybdenum

598 kJ/mol

43
Tc

Technetium

660 kJ/mol

44
Ru

Ruthenium

595 kJ/mol

45
Rh

Rhodium

493 kJ/mol

46
Pd

Palladium

357 kJ/mol

47
Ag

Silver

250.58 kJ/mol

48
Cd

Cadmium

99.57 kJ/mol

49
In

Indium

231.5 kJ/mol

50
Sn

Tin

295.8 kJ/mol

51
Sb

Antimony

77.14 kJ/mol

52
Te

Tellurium

55.52 kJ/mol

53
I

Iodine

20.752 kJ/mol

54
Xe

Xenon

12.636 kJ/mol

55
Cs

Caesium

67.74 kJ/mol

56
Ba

Barium

142 kJ/mol

57-71

 

Lanthanoids

 

72
Hf

Hafnium

575 kJ/mol

73
Ta

Tantalum

743 kJ/mol

74
W

Tungsten

824 kJ/mol

75
Re

Rhenium

715 kJ/mol

76
Os

Osmium

746 kJ/mol

77
Ir

Iridium

604 kJ/mol

78
Pt

Platinum

510 kJ/mol

79
Au

Gold

334.4 kJ/mol

80
Hg

Mercury

59.229 kJ/mol

81
Tl

Thallium

164.1 kJ/mol

82
Pb

Lead

177.7 kJ/mol

83
Bi

Bismuth

104.8 kJ/mol

84
Po

Polonium

103 kJ/mol

85
At

Astatine

54.4 kJ/mol

86
Rn

Radon

16.4 kJ/mol

87
Fr

Francium

 

88
Ra

Radium

113 kJ/mol

89-103

 

Actinoids

 

104
Rf

Rutherfordium

 

105
Db

Dubnium

 

106
Sg

Seaborgium

 

107
Bh

Bohrium

 

108
Hs

Hassium

 

109
Mt

Meitnerium

 

110
Ds

Darmstadtium

 

111
Rg

Roentgenium

 

112
Cn

Copernicium

 

113
Nh

Nihonium

130 kJ/mol

114
Fl

Flerovium

38 kJ/mol

115
Mc

Moscovium

 

116
Lv

Livermorium

 

117
Ts

Tennessine

 

118
Og

Oganesson

 

57
La

Lanthanum

414 kJ/mol

58
Ce

Cerium

414 kJ/mol

59
Pr

Praseodymium

296.8 kJ/mol

60
Nd

Neodymium

273 kJ/mol

61
Pm

Promethium

 

62
Sm

Samarium

192 kJ/mol

63
Eu

Europium

143.5 kJ/mol

64
Gd

Gadolinium

359.4 kJ/mol

65
Tb

Terbium

330.9 kJ/mol

66
Dy

Dysprosium

230.1 kJ/mol

67
Ho

Holmium

241 kJ/mol

68
Er

Erbium

261 kJ/mol

69
Th

Thulium

191 kJ/mol

70
Yb

Ytterbium

128.9 kJ/mol

71
Lu

Lutetium

355.9 kJ/mol

89
Ac

Actinium

400 kJ/mol

90
Th

Thorium

514.4 kJ/mol

91
Pa

Protactinium

481 kJ/mol

92
U

Uranium

417 kJ/mol

93
Np

Neptunium

336 kJ/mol

94
Pu

Plutonium

344 kJ/mol

95
Am

Americium

 

96
Cm

Curium

 

97
Bk

Berkelium

 

98
Cf

Californium

 

99
Es

Einsteinium

 

100
Fm

Fermium

 

101
Md

Mendelevium

 

102
No

Nobelium

 

103
Lr

Lawrencium

 

Nobelium – Latent Heat of Vaporization

Latent Heat of Vaporization of Nobelium is — kJ/mol.

Phase-Changes-Heat-of-VaporizationIn general, when a material changes phase from solid to liquid, or from liquid to gas a certain amount of energy is involved in this change of phase. In case of liquid to gas phase change, this amount of energy is known as the enthalpy of vaporization, (symbol ∆Hvap; unit: J) also known as the (latent) heat of vaporization or heat of evaporation. As an example, see the figure, which descibes phase transitions of water.

Latent heat is the amount of heat added to or removed from a substance to produce a change in phase. This energy breaks down the intermolecular attractive forces, and also must provide the energy necessary to expand the gas (the pΔV work). When latent heat is added, no temperature change occurs. The enthalpy of vaporization is a function of the pressure at which that transformation takes place.

The temperature at which vaporization (boiling) starts to occur for a given pressure is also known as the saturation temperature and at this conditions a mixture of vapor and liquid can exist together. The liquid can be said to be saturated with thermal energy. Any addition of thermal energy results in a phase transition. At the boiling point the two phases of a substance, liquid and vapor, have identical free energies and therefore are equally likely to exist. Below the boiling point, the liquid is the more stable state of the two, whereas above the gaseous form is preferred.

heat-of-fusion-and-vaporization-chemical-elements