Krypton – Latent Heat of Fusion

Periodic Table of Elements - latent heat fusion
1
H

Hydrogen

0.05868 kJ/mol

2
He

Helium

0.0138 kJ/mol

3
Li

Lithium

3 kJ/mol

4
Be

Beryllium

12.2 kJ/mol

5
B

Boron

50.2 kJ/mol

6
C

Carbon

 

7
N

Nitrogen

(N2) 0.7204 kJ/mol

8
O

Oxygen

(O2) 0.444 kJ/mol

9
F

Fluorine

0.2552 kJ/mol

10
Ne

Neon

0.3317 kJ/mol

11
Na

Sodium

2.598 kJ/mol

12
Mg

Magnesium

8.954 kJ/mol

13
Al

Aluminium

10.79 kJ/mol

14
Si

Silicon

50.55 kJ/mol

15
P

Phosphorus

0.657 kJ/mol

16
S

Sulfur

1.7175 kJ/mol

17
Cl

Chlorine

3.23 kJ/mol

18
Ar

Argon

1.188 kJ/mol

19
K

Potassium

2.334 kJ/mol

20
Ca

Calcium

8.54 kJ/mol

21
Sc

Scandium

14.1 kJ/mol

22
Ti

Titanium

15.45 kJ/mol

23
V

Vanadium

20.9 kJ/mol

24
Cr

Chromium

16.9 kJ/mol

25
Mn

Manganese

12.05 kJ/mol

26
Fe

Iron

13.8 kJ/mol

27
Co

Cobalt

16.19 kJ/mol

28
Ni

Nickel

17.47 kJ/mol

29
Cu

Copper

13.05 kJ/mol

30
Zn

Zinc

7.322 kJ/mol

31
Ga

Gallium

5.59 kJ/mol

32
Ge

Germanium

36.94 kJ/mol

33
As

Arsenic

 

34
Se

Selenium

6.694 kJ/mol

35
Br

Bromine

5.286 kJ/mol

36
Kr

Krypton

1.638 kJ/mol

37
Rb

Rubidium

2.192 kJ/mol

38
Sr

Strontium

8.3 kJ/mol

39
Y

Yttrium

11.4 kJ/mol

40
Zr

Zirconium

16.9 kJ/mol

41
Nb

Niobium

26.4 kJ/mol

42
Mo

Molybdenum

32 kJ/mol

43
Tc

Technetium

24 kJ/mol

44
Ru

Ruthenium

24 kJ/mol

45
Rh

Rhodium

21.5 kJ/mol

46
Pd

Palladium

17.6 kJ/mol

47
Ag

Silver

11.3 kJ/mol

48
Cd

Cadmium

6.192 kJ/mol

49
In

Indium

3.263 kJ/mol

50
Sn

Tin

7.029 kJ/mol

51
Sb

Antimony

19.87 kJ/mol

52
Te

Tellurium

17.49 kJ/mol

53
I

Iodine

7.824 kJ/mol

54
Xe

Xenon

2.297 kJ/mol

55
Cs

Caesium

2.092 kJ/mol

56
Ba

Barium

7.75 kJ/mol

57-71

 

Lanthanoids

 

72
Hf

Hafnium

24.06 kJ/mol

73
Ta

Tantalum

31.6 kJ/mol

74
W

Tungsten

35.4 kJ/mol

75
Re

Rhenium

33.2 kJ/mol

76
Os

Osmium

31.8 kJ/mol

77
Ir

Iridium

26.1 kJ/mol

78
Pt

Platinum

19.6 kJ/mol

79
Au

Gold

12.55 kJ/mol

80
Hg

Mercury

2.295 kJ/mol

81
Tl

Thallium

4.142 kJ/mol

82
Pb

Lead

4.799 kJ/mol

83
Bi

Bismuth

11.3 kJ/mol

84
Po

Polonium

13 kJ/mol

85
At

Astatine

 

86
Rn

Radon

2.89 kJ/mol

87
Fr

Francium

 

88
Ra

Radium

8.5 kJ/mol

89-103

 

Actinoids

 

104
Rf

Rutherfordium

 

105
Db

Dubnium

 

106
Sg

Seaborgium

 

107
Bh

Bohrium

 

108
Hs

Hassium

 

109
Mt

Meitnerium

 

110
Ds

Darmstadtium

 

111
Rg

Roentgenium

 

112
Cn

Copernicium

 

113
Nh

Nihonium

7.61 kJ/mol

114
Fl

Flerovium

 

115
Mc

Moscovium

 

116
Lv

Livermorium

 

117
Ts

Tennessine

 

118
Og

Oganesson

 

57
La

Lanthanum

6.2 kJ/mol

58
Ce

Cerium

5.46 kJ/mol

59
Pr

Praseodymium

6.89 kJ/mol

60
Nd

Neodymium

7.14 kJ/mol

61
Pm

Promethium

 

62
Sm

Samarium

8.63 kJ/mol

63
Eu

Europium

9.21 kJ/mol

64
Gd

Gadolinium

10.05 kJ/mol

65
Tb

Terbium

10.8 kJ/mol

66
Dy

Dysprosium

11.06 kJ/mol

67
Ho

Holmium

12.2 kJ/mol

68
Er

Erbium

19.9 kJ/mol

69
Th

Thulium

16.84 kJ/mol

70
Yb

Ytterbium

7.66 kJ/mol

71
Lu

Lutetium

18.6 kJ/mol

89
Ac

Actinium

14 kJ/mol

90
Th

Thorium

13.8 kJ/mol

91
Pa

Protactinium

12.3 kJ/mol

92
U

Uranium

8.52 kJ/mol

93
Np

Neptunium

5.19 kJ/mol

94
Pu

Plutonium

2.84 kJ/mol

95
Am

Americium

14.4 kJ/mol

96
Cm

Curium

15 kJ/mol

97
Bk

Berkelium

7.92 kJ/mol

98
Cf

Californium

 

99
Es

Einsteinium

 

100
Fm

Fermium

 

101
Md

Mendelevium

 

102
No

Nobelium

 

103
Lr

Lawrencium

 

Krypton – Latent Heat of Fusion

Latent Heat of Fusion of Krypton is 1.638 kJ/mol.

Phase-Changes-Heat-of-Vaporization

In case of solid to liquid phase change, the change in enthalpy required to change its state is known as the enthalpy of fusion, (symbol ∆Hfus; unit: J) also known as the (latent) heat of fusion. Latent heat is the amount of heat added to or removed from a substance to produce a change in phase. This energy breaks down the intermolecular attractive forces, and also must provide the energy necessary to expand the system (the pΔV work).

The liquid phase has a higher internal energy than the solid phase. This means energy must be supplied to a solid in order to melt it and energy is released from a liquid when it freezes, because the molecules in the liquid experience weaker intermolecular forces and so have a higher potential energy (a kind of bond-dissociation energy for intermolecular forces).

 

The temperature at which the phase transition occurs is the melting point. The melting point also defines a condition in which the solid and liquid can exist in equilibrium. Adding a heat will convert the solid into a liquid with no temperature change. At the melting point the two phases of a substance, liquid and vapor, have identical free energies and therefore are equally likely to exist. Below the melting point, the solid is the more stable state of the two, whereas above the liquid form is preferred. The melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the reverse change from liquid to solid, it is referred to as the freezing point or crystallization point.

heat-of-fusion-and-vaporization-chemical-elements