Hydrogen – Thermal Expansion Coefficient

Periodic Table of Elements - thermal expansion
1
H

Hydrogen

 

2
He

Helium

 

3
Li

Lithium

46 µm/(m·K)

4
Be

Beryllium

11.3 µm/(m·K)

5
B

Boron

5-7 µm/(m·K)

6
C

Carbon

0.8 µm/(m·K)

7
N

Nitrogen

 

8
O

Oxygen

 

9
F

Fluorine

 

10
Ne

Neon

 

11
Na

Sodium

71 µm/(m·K)

12
Mg

Magnesium

24.8 µm/(m·K)

13
Al

Aluminium

23.1 µm/(m·K)

14
Si

Silicon

2.6 µm/(m·K)

15
P

Phosphorus

 

16
S

Sulfur

 

17
Cl

Chlorine

 

18
Ar

Argon

 

19
K

Potassium

83 µm/(m·K)

20
Ca

Calcium

22.3 µm/(m·K)

21
Sc

Scandium

10.2 µm/(m·K)

22
Ti

Titanium

8.6 µm/(m·K)

23
V

Vanadium

8.4 µm/(m·K)

24
Cr

Chromium

4.9 µm/(m·K)

25
Mn

Manganese

21.7 µm/(m·K)

26
Fe

Iron

11.8 µm/(m·K)

27
Co

Cobalt

13 µm/(m·K)

28
Ni

Nickel

13.4 µm/(m·K)

29
Cu

Copper

16.5 µm/(m·K)

30
Zn

Zinc

30.2 µm/(m·K)

31
Ga

Gallium

18 µm/(m·K)

32
Ge

Germanium

6 µm/(m·K)

33
As

Arsenic

5.6 µm/(m·K)

34
Se

Selenium

37 µm/(m·K)

35
Br

Bromine

 

36
Kr

Krypton

 

37
Rb

Rubidium

90 µm/(m·K)

38
Sr

Strontium

22.5 µm/(m·K)

39
Y

Yttrium

10.6 µm/(m·K)

40
Zr

Zirconium

5.7 µm/(m·K)

41
Nb

Niobium

7.3 µm/(m·K)

42
Mo

Molybdenum

4.8 µm/(m·K)

43
Tc

Technetium

7.1 µm/(m·K)

44
Ru

Ruthenium

6.4 µm/(m·K)

45
Rh

Rhodium

8.2 µm/(m·K)

46
Pd

Palladium

11.8 µm/(m·K)

47
Ag

Silver

18.9 µm/(m·K)

48
Cd

Cadmium

30.8 µm/(m·K)

49
In

Indium

32.1 µm/(m·K)

50
Sn

Tin

22 µm/(m·K)

51
Sb

Antimony

11 µm/(m·K)

52
Te

Tellurium

18 µm/(m·K)

53
I

Iodine

 

54
Xe

Xenon

 

55
Cs

Caesium

97 µm/(m·K)

56
Ba

Barium

20.6 µm/(m·K)

57-71

 

Lanthanoids

 

72
Hf

Hafnium

5.9 µm/(m·K)

73
Ta

Tantalum

6.3 µm/(m·K)

74
W

Tungsten

4.5 µm/(m·K)

75
Re

Rhenium

6.2 µm/(m·K)

76
Os

Osmium

5.1 µm/(m·K)

77
Ir

Iridium

6.4 µm/(m·K)

78
Pt

Platinum

8.8 µm/(m·K)

79
Au

Gold

14.2 µm/(m·K)

80
Hg

Mercury

60.4 µm/(m·K)

81
Tl

Thallium

29.9 µm/(m·K)

82
Pb

Lead

28.9 µm/(m·K)

83
Bi

Bismuth

13.4 µm/(m·K)

84
Po

Polonium

23.5 µm/(m·K)

85
At

Astatine

 

86
Rn

Radon

 

87
Fr

Francium

 

88
Ra

Radium

 

89-103

 

Actinoids

 

104
Rf

Rutherfordium

 

105
Db

Dubnium

 

106
Sg

Seaborgium

 

107
Bh

Bohrium

 

108
Hs

Hassium

 

109
Mt

Meitnerium

 

110
Ds

Darmstadtium

 

111
Rg

Roentgenium

 

112
Cn

Copernicium

 

113
Nh

Nihonium

 

114
Fl

Flerovium

 

115
Mc

Moscovium

 

116
Lv

Livermorium

 

117
Ts

Tennessine

 

118
Og

Oganesson

 

57
La

Lanthanum

12.1 µm/(m·K)

58
Ce

Cerium

6.3 µm/(m·K)

59
Pr

Praseodymium

6.7 µm/(m·K)

60
Nd

Neodymium

9.6 µm/(m·K)

61
Pm

Promethium

9 µm/(m·K)

62
Sm

Samarium

12.7 µm/(m·K)

63
Eu

Europium

35 µm/(m·K)

64
Gd

Gadolinium

9.4 µm/(m·K)

65
Tb

Terbium

10.3 µm/(m·K)

66
Dy

Dysprosium

9.9 µm/(m·K)

67
Ho

Holmium

11.2 µm/(m·K)

68
Er

Erbium

12.2 µm/(m·K)

69
Th

Thulium

13.3 µm/(m·K)

70
Yb

Ytterbium

26.3 µm/(m·K)

71
Lu

Lutetium

9.9 µm/(m·K)

89
Ac

Actinium

 

90
Th

Thorium

11 µm/(m·K)

91
Pa

Protactinium

10 µm/(m·K)

92
U

Uranium

13.9 µm/(m·K)

93
Np

Neptunium

 

94
Pu

Plutonium

46.7 µm/(m·K)

95
Am

Americium

 

96
Cm

Curium

 

97
Bk

Berkelium

 

98
Cf

Californium

 

99
Es

Einsteinium

 

100
Fm

Fermium

 

101
Md

Mendelevium

 

102
No

Nobelium

 

103
Lr

Lawrencium

 

Coefficient of Thermal Expansion of Hydrogen

Linear thermal expansion coefficient of Hydrogen is µm/(m·K)

Thermal expansion is generally the tendency of matter to change its dimensions in response to a change in temperature. It is usually expressed as a fractional change in length or volume per unit temperature change. Thermal expansion is common for solids, liquids and for gases. Unlike gases or liquids, solid materials tend to keep their shape when undergoing thermal expansion. A linear expansion coefficient is usually employed in describing the expansion of a solid, while a volume expansion coefficient is more useful for a liquid or a gas.

The linear thermal expansion coefficient is defined as:

linear thermal expansion coefficient

where L is a particular length measurement and dL/dT is the rate of change of that linear dimension per unit change in temperature.

The volumetric thermal expansion coefficient is the most basic thermal expansion coefficient, and the most relevant for fluids. In general, substances expand or contract when their temperature changes, with expansion or contraction occurring in all directions.

The volumetric thermal expansion coefficient is defined as:

volumetric thermal expansion coefficient

where L is the volume of the material and dV/dT is the rate of change of that volume per unit change in temperature.

In a solid or liquid, there is a dynamic balance between the cohesive forces holding the atoms or molecules together and the conditions created by temperature. Therefore higher temperatures imply greater distance between atoms. Different materials have different bonding forces and therefore different expansion coefficients. If a crystalline solid is isometric (has the same structural configuration throughout), the expansion will be uniform in all dimensions of the crystal. For these materials, the area and volumetric thermal expansion coefficient are, respectively, approximately twice and three times larger than the linear thermal expansion coefficient (αV = 3αL). If it is not isometric, there may be different expansion coefficients for different crystallographic directions, and the crystal will change shape as the temperature changes.