## Momentum of Photon

**A photon, the quantum of electromagnetic radiation**, is an elementary particle, which is the force carrier of the electromagnetic force. The modern photon concept was developed (1905) by **Albert Einstein** to explain of the photoelectric effect, in which he proposed the existence of discrete energy packets during the transmission of light.

In 1916, Einstein extended his concept of light quanta (photons) by proposing that a **quantum of light has linear momentum**. Although a photon is **massless**, it has momentum, which is related to its energy E, frequency f, and wavelength by:

Thus, when a photon interacts with another object, **energy and momentum are transferred**, as if there were a collision between the photon and matter in the classical sense.

## Momentum of a Photon – Compton Scattering

The Compton formula was published in 1923 in the Physical Review. Compton explained that the X-ray **shift** is caused by particle-like **momentum of photons**. **Compton scattering formula** is the mathematical relationship between the **shift in wavelength** and the scattering angle of the X-rays. In the case of Compton scattering the photon of frequency *f* collides with an electron at rest. Upon collision, the photon bounces off electron, giving up some of its initial energy (given by Planck’s formula E=hf), While the electron gains momentum (mass x velocity), the **photon cannot lower its velocity**. As a result of momentum conservation law, the photon must lower its momentum given by:

So the decrease in photon’s momentum must be translated into **decrease in frequency** (increase in wavelength Δ**λ = λ’ – λ**). The shift of the wavelength increased with scattering angle according to **the Compton formula**:

where **λ** is the initial wavelength of photon **λ’** is the wavelength after scattering, **h **is the Planck constant = 6.626 x 10^{-34} J.s, **m _{e}** is the electron rest mass (0.511 MeV)

**c**is the speed of light

**Θ**is the scattering angle. The minimum change in wavelength (

*λ′*−

*λ*) for the photon occurs when Θ = 0° (cos(Θ)=1) and is at least zero. The maximum change in wavelength (

*λ′*−

*λ*) for the photon occurs when Θ = 180° (cos(Θ)=-1). In this case the photon transfers to the electron as much momentum as possible. The maximum change in wavelength can be derived from Compton formula:

The quantity h/m_{e}c is known as the **Compton wavelength** of the electron and is equal to **2.43×10 ^{−12}**

**m**.

We hope, this article, **Momentum of Photon**, helps you. If so, **give us a like** in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about radiation and dosimeters.